Migrating PLB SFM data to FLEx or LIFT

Jonathan Coombs

Jan 2012

There are many technical details to consider when migrating dictionary data from any SFM (Standard Format Markers) format into a more structured format such as FLEx (FieldWorks Language Explorer) or LIFT (Lexicon Interchange FormaT). Many of these are covered in the "Technical Notes on SFM Import.doc", provided in the FLEx Help menu. There are also tips online, provided by import specialists:
  http://wiki.lingtransoft.info/tutorials/preparing_legacy_data_for_flex
This document describes some theoretical and technical details specific to lexicons using PLB SFM (a set of backslash markers often used for dictionaries of Philippine languages), and it provides tips for dealing with issues such as mismatches in structure.
References to section numbers (in the form "s6.2.6.1"), or to page numbers, refer to the Handbook on Lexicography for Philippine and Other Languages, by Len Newell, unless otherwise noted. Another useful reference is Philippine Dictionaries on Computer, by Marc Jacobsen, (an internal SIL book with a green cover). Ken Zook has some cc tables and documentation specifically dealing with technical issues with importing one user's PLB SFM file. Additional info and resources can be found on Teamwork:
  https://sharing.teamwork-asia.net/content/standard-sfm-codes-plb (login required)

Table of Contents:
2Terminology and Theory


2The complexity of senses


3Converting with subsenses, for minimal structural change (Option A):


4Converting to standard structures (Option B, recommended):


5Converting using subentries of senses (Option C):


5Collapsing down to standard structures (Option D, recommended):


5Summary of differences in concepts and terminology.


6Use Solid to compare the lexicon to "standard" PLB SFM


7Make empty fields such as \da or \de be non-empty


8Combine crucially ordered fields such as \ad \rf \ad


8Handle shorthand formatting


8Change bolding from plus codes (+) to bar codes (|b |r)


9Replace asterisk shorthand (*) with separate index fields


9Handle embedded data


9Split off homograph numbers into their own field


9Split delimited fields


10Flag embedded cross-references


10Handle other kinds of embedding


10Decide what to do with tables


10Decide what to do with senses and subsenses


10Deal with grouped senses


11Deal with two-part subsenses


11Eliminate any subentries of senses


11Option A: Insert numbered subsenses wherever one sense (\ms) contains multiple subsenses; i.e. parts of speech (\ps)


11Option B (recommended): Convert each complex-form subsense to an ordinary subentry.


12Option C: Convert each complex-form subsense to a subentry of a sense


12Option D (recommended): Collapsing multiple definitions down into one




Terminology and Theory

The terminology and theory used by Len Newell in the handbook differ in several key ways from what is used in FLEx. Several unusual core ideas are assumed throughout the early chapters and then explained and defended in later chapters (especially s8.3 in Chapter 8).

Also, to understand the examples below, you should be aware that the definitions (termed "glosses") used in the handbook are essentially COBUILD-type definitions, in which a full sentence is given, and the bolded part corresponds to the core meaning of the lexeme. This style of definition is quite useful but relies heavily on bolding certain words within each definition (and generally within each Example). So, it's important that this formatting be properly imported into FLEx. (The structure of PLB SFM is the same regardless of the type of definition used.)
The complexity of senses

The most difficult difference to deal with is the sheer amount of nested structure that is allowed within a "sense". In some simple PLB dictionaries, this may not be done much, but others have a lot of complexity, as in the following example (from p. 307), a fairly typical Ifugao example:
tapeng 1. n. A stone retaining wall.

  2. n. The work of building a stone retaining wall.

    v. muntapeng  Someone will build a stone retaining wall.

        tumpeng (-um-)  Someone will wall something with stones, as a breach in a stone wall...
    v. etpeng (i-), pampeng (paN-)  A particular choice of stones will be used by someone in walling with stones.
    v. An unfinished portion of a stone wall will have a stone wall built onto it by someone.

The second "sense" of tapeng contains multiple definitions (five) and multiple parts of speech, whereas FLEx only allows one of each per sense. In most dictionaries, the need for multiple definitions would imply multiple senses or even multiple entries. Likewise, multiple parts of speech would imply multiple senses/entries. Normally, inflected forms are omitted or simply listed (not defined), and derived forms are defined in their own entries or subentries. Newell's system, when nesting definitions/examples under affixed forms as "senses" without creating separate (sub)entries, is not directly compatible with FLEx. 
Inflection and Derivation

Regarding "inflected" and "derived" forms, a common rule of thumb is that morphology which doesn't change part of speech might be inflectional, whereas morphology which does is always derivational. In Newell's system, however, only highly unpredicable derivations are treated as separate words. He summarizes as follows: "1) Regular derivatives. (Both form and function are regular and widely productive.) Treat in the same manner as inflected forms... 2) Irregular derivatives. (Either form or meaning or both are irregular.) Include all forms (except rarely used forms) as major entries with corresponding subentries." (p.179)

Thus, both the noun tapeng and the verb muntapeng are treated as a single sense above, even if muntapeng is a derivation rather than a mere inflection. (Again, this is only a problem for FLEx because muntapeng is still given a separate definition / part of speech.)  For an explanation, see s9.6. For example, he writes, "we are ranking sense discrimination as more basic than part of speech" (p.219).
Technically, Newell would refer to the four parts of speech above (n, v, v, v) as four "subsenses" of sense two (the second subsense containing two definitions), but unlike subsenses in FLEx, he does not consider them semantically distinct. They are simply worded differently to reflect differences in usage, just as we could write separate definitions for "kill", "killing", and "(be) killed", displayed under a single sense of "kill", if we wanted to. This isn't considered worthwhile for English dictionaries, but the idea here seems to be to help learners of Ifugao use verbs correctly. (A more typical and concise alternative, instead of outlining the Ifugao verbal system in every verb entry, would be to document that system in the front matter or an appendix. But then some readers might not notice it. Also, if different classes of verbs are affixed differently, then each verb would need its class indicated, or its affixes listed.)

Although this is a system for covering all inflected forms with a single sense, Newell also handles most "regular" derivatives in exactly the same way (p.176). In fact, the example above includes derivatives. A "regular" derivative here is not necessarily predictable from its components alone (as the English regular derivatives "quickly" and "quickness" are), but it is said to follow a well-attested pattern of derivation. Examples: bakay 'buy', magbinākay 'keep on buying' (p.177); tāgu 'a person', matāgu 'alive' (p.178).
Note that the definition, "An unfinished portion...", which does apply to the /tapeng/ wordform, is listed at the end, after several definitions which do not directly apply to the bare root /tapeng/ but to affixed forms.

Not really root-based

This system is often referred to as "root-based" rather than stem-based because so much information in included inside the entry for the root "tapeng". However, all other complex forms--phrases, compounds, and "irregular" derivatives--must be given their own main entries, which will alphabetize separately. These may be cross-referenced via a "subentry" in the root entry, but this is essentially just a cross-reference with one summary definition--technically a minor subentry. A truly root-based system would allow these complex forms to be nested under their roots along with full information covering all of their senses. No separate major entry would be required, although a minor entry pointing back to the root entry is often useful. (FLEx can auto-generate minor entries as desired.)
For example, in PLB SFM the full description of ohha'ohha would be a main  entry, although ohha's main entry would have a "subentry" (really a minor subentry) pointing to it. Likewise, oha's main entry would have a "subentry" pointing to ohha. (p.188) This is very much a stem-based approach. In a typical root-based dictionary, ohha and ohha'ohha would both be full subentries of oha (ohha'ohha might actually be a subentry of a subentry).
These complex senses are quite difficult to import into FLEx. Let's consider several options for doing so. A quick-reference table of the various differences between the systems will then be provided.

DISCLAIMER: None of these approaches have been thoroughly tested. Please read the pros and cons carefully, and if you think of more pros and cons, consider sharing them via email or Teamwork-Asia.
Converting with subsenses, for minimal structural change (Option A):

The simplest approach for importing this complex structure into FLEx without loss might be to mimic the PLB SFM structures as much as possible, reinterpreting FLEx's definition of "subsense" to match Newell's, and treating nearly all complex forms as if they were inflected forms. FLEx does not yet specifically support paradigms, so this could be done using custom fields at the sense level.

Original (repeated for ease of comparison):

tapeng 1. n. A stone retaining wall.

  2. n. The work of building a stone retaining wall.

    v. muntapeng  Someone will build a stone retaining wall.

        tumpeng (-um-)  Someone will wall something with stones, as a breach in a stone wall...
    v. etpeng (i-), pampeng (paN-)  A particular choice of stones will be used by someone in walling with stones.
    v. An unfinished portion of a stone wall will have a stone wall built onto it by someone.

Converted with subsenses (Option A):

tapeng 1) n. A stone retaining wall.

  2) a) n. The work of building a stone retaining wall.

    b) v. muntapeng  Someone will build a stone retaining wall.

    c) v. tumpeng (-um-)  Someone will wall something with stones, as a breach in a stone wall...
    d) v. etpeng (i-), pampeng (paN-)  A particular choice of stones will be used by someone in walling with
    e) v. An unfinished portion of a stone wall will have a stone wall built onto it by someone.

Note that "tumpeng" has been manually promoted here, to avoid the complexity of numbering subsenses of subsenses (which would've been "2.b.i" and "2.b.ii" in this case), but nothing has been reordered.
To import into subsenses, it is first necessary for each subsense to be hierarchically numbered (2.2, 3.1, etc.) Ken has made cc tables for this purpose.
Pros and cons: This approach preserves the original data and structure and doesn't require much manual restructuring. However, it hides most complex forms from FLEx by putting them in custom paradigm fields, so FLEx cannot generate minor entries for them, cannot easily find them, etc. And the non-standard output may be confusing to those who are not used to this kind of dictionary.
Workaround: If you need FLEx to know all of the wordforms as words, an alternative to custom paradigm fields would be one custom field that you intend to import into FLEx as a custom "variant". But this will generate many separate variant entries in FLEx, and since these words are not really variants, be sure to label this "variant" type carefully in FLEx to avoid confusion: something like "regular derivative" or "regularly inflected form". If you know how to write a Python script using FLEx Tools, it would be good to write one that converts all of these custom "variants" into subentries of senses, and to run the script immediately after import.
Converting to standard structures (Option B, recommended):
When feasible, it is probably better to switch to a more standard structure and output. Assuming for the moment that all complex forms in our example are derivatives, after converting it all into a standard FLEx dictionary entry it might look like this (in root-based mode):
Converted to standard structures (Option B):

tapeng 1. n. A stone retaining wall.

  2. n. The work of building a stone retaining wall.

  3. v. An unfinished portion of a stone wall will have a stone wall built onto it by someone.

  muntapeng  v. Someone will build a stone retaining wall.

  tumpeng (-um-)  v. Someone will wall something with stones, as a breach in a stone wall....

  etpeng (i-)  v. A particular choice of stones will be used by someone in walling with stones.
  pampeng (paN-)  v. A particular choice of stones will be used by someone in walling with stones.
Note that senses are numbered and complex forms are not. Also, the definition, "An unfinished portion...", was moved up under the /tapeng/ wordform, but most of the definitions were moved into subentries.

Look closely at the final two wordforms, "etpeng" and "pampeng". Here they are shown as separate derivatives, and their definitions' bolding has been manually adjusted using guesswork (this cannot be automated). In some cases, however, a comma-separated value might indicate that the second word is a variant or a similar inflected form, in which case filling out a paradigm field under "etpeng" (or simply including "pampeng" in an example sentence under "etpeng") would probably suffice.
Note that the complex forms above ("muntapeng" through "pampeng") are true subentries in a root-based layout. FLEx can also output these in a stem-based layout without the data first being modified. (Again, PLB SFM uses an essentially stem-based structure but approximates the display of a root-based structure by treating senses, paradigms, and some subentries all as senses/subsenses.)
Pros and cons: Modifying this entry as described above requires significant manual labor, and as complex forms get reordered within an entry, some implicit information can be lost. But it results in a more standard display, and the wordforms should all then be known to FLEx as words. FLEx can then generate minor entries when desired, and it can easily find complex forms (e.g. for interlinearizing, or to show you that a word is already in the lexicon when you try to add it). Spell-checking would likely go more smoothly as well.
Converting using subentries of senses (Option C):

For those who like to have their cake and eat it too, it might be possible to preserve the sense structure from the PLB SFM file while at the same time moving complex forms and their data into subentries (i.e. into separate FLEx records). Hopefully the output could be configured to look very much like Option A, but FLEx would know about the complex forms and not just about the roots. (For an example of an SFM format that allows subentries of senses, see MDF Alternate Hierarchy, a very rarely-used flavor of MDF.)
Pros and cons: Essentially all of the pros from options A and B should apply. However, it is not currently possible to import subentries of senses from SFM into FLEx. Also, FLEx has tended to have trouble displaying subentries of senses, probably because it's not a feature used by many people. And the increased amount of possible hierarchies inherently complicates the task of formatting the output.
Collapsing down to standard structures (Option D, recommended):
We have seen that the original intent of PLB SFM was to only include inflected forms and regular derivatives in the \oi fields inside of a root's sense fields, and any individual definitions of these will be largely similar or redundant. Thus, if the "regular derivative" concept has indeed been used strictly and consistently, and all unpredictable forms have been safely split off into separate entries/subentries, then it may be a good idea to have a script collapse all the main senses down so that they do not contain multiple "subsenses" (i.e. enforce one definition / part of speech per sense). The resulting definitions can then be manually pruned later on (either in SFM or in FLEx). 
Collapsed down to standard structures (Option D):

tapeng 1. n. A stone retaining wall.
  2. v. The work of building a stone retaining wall; Someone will build a stone retaining wall; Someone will wall something with stones, as a breach in a stone wall; A particular choice of stones will be used by someone in walling with stones; An unfinished portion of a stone wall will have a stone wall built onto it by someone. (muntapeng; tumpeng; etpeng; pampeng)
Pros and cons: This structure is simpler and easier to import, and the data probably reflects a more standard approach to lexicography than Option A. It would generate fewer subentries (and probably fewer minor entries) than Option B. However, it would create a lot of work for the end user, and some parts of speech such as the "n." in sense 2 above might be lost or need to be dumped into some temporary field. The looser the concept of "regular derivation", and the greater the number of individual definitions ("subsenses"), the less this solution fits, as we can see in this example. Also, FLEx will not know the inflected wordforms as words (although the workaround in Option A could work here too).
Summary of differences in concepts and terminology.

	The Handbook's idea of a...
	...corresponds roughly to FLEx's idea of a...

	
	

	Gloss (\gl)
	Definition (or Summary Definition, in the case of subentries)

	?? (\lg in some newer lexicons) 
	Gloss (used more for interlinear texts than for the published dictionary)

	Lexical Item (\lx)
	Lexeme Form

	Lexeme / Sense (\ms)
	Sense (but a sense in FLEx contains only one Definition and one Category)

	Part of Speech (a single \ps per \ms; doesn't indicate a subsense)
	Grammatical Info / Category of the Sense (not much different from POS, but includes the concept of subcategories)

	Subsenses are really just parts of the description of a single main sense, rather than distinct senses. (p.139, 297)
	Subsenses are distinct senses, grouped together with the other senses most similar to them.

	Subsense (multiple \ps under one \ms), either

1) headed by inflected/predictable complex form(s) (p.298,138) or
2) without any (i.e. its "gloss" applies directly to the uninflected root)
	1a) Subsense (fits the source data better) OR 
1b) Complex Form's sense (fits FLEx better but requires restructuring)
2) Subsense, or perhaps Sense

	
	

	Inflected form (\oi etc.; used extensively for any complex form with fairly predictable meaning)
	a) custom field within the Sense? I.e. nothing more than a bold label, formatted to look like a subentry headword. OR,

b) Complex Form's headword (makes more sense for derivations than inflections)

	Major Entry
	Main Entry

	Subentry (\ld \li etc.; used sparingly for unpredictable derivatives; used also for idioms, compounds, etc.; all are expected to also have their own main entries)
	Minor Subentry; i.e. a Complex Form as seen in a stem-based dictionary. To approximate the PLB layout, publish a complex form as its own main entry (i.e. choose stem-based mode), link it to its Component to get a minor subentry (a glorified cross-reference), and fill in Summary Definition.

	
	

	Variant
	Variant

	Morphophonemic Variant (p.162)
	Allomorph

	
	


One key concept used throughout the handbook is that the core of a definition is its "intensional" meaning (p.83), whereas its "extensional" range of meaning can vary according to context. Only the intensional part is bolded, and only the part of that which corresponds to the headword. This is a useful concept, and it is core to understanding much of what is written in the Handbook.
If you'll be reading the Handbook in depth, you may want to note that "performer" is used instead of the standard "actor" macro-role, and "actor" is used as a specific case role, listed along with "agent" and "patient". (The other standard term for a macro-role, "undergoer", is used in the standard way.)
Likewise, like much of the literature on Philippine languages, the term "focus" is used to refer to the verb's voice (such as active, passive, etc.) and the corresponding cases of its constituents. This is not at all the same as the discourse concept of "focus". (E.g. the comment is the focus in a topic-comment sentence, and the focus of a cleft sentence is the first part.)
Use Solid to compare the lexicon to "standard" PLB SFM

The first step when migrating lexical data from one format to another is to evaluate the structures that exist in the source data. Solid is a checking and cleanup tool for SFM lexicon files, from palaso.org (SIL and Payap University), that can be used to simply improve an SFM file for consistency or publication, or it can be used to aid the process of preparing to migrate the data (e.g. into FLEx or LIFT).
A template has been provided for PLB SFM. It is still a work in progress and is not yet shipping with Solid, but it's available from the Teamwork-Asia pages, along with further documentation of the hierarchical structure of PLB SFM.
TIP: Solid displays a list of all markers currently be used at least one time in the open data file. The map/template file may have other markers defined and configured, but the only way to view those settings is to add those markers to the data file.

Note: All of the official PLB SFM markers are one to three characters long, and there are many of them! When adding new markers for the purpose of cleanup or import, using a longer, more descriptive marker will simplify keeping track of them.

Some specific issues to look for when checking a PLB SFM lexicon file: 

- Are the senses in this file typically very complex in a PLB-specific way? If only a few are, it's probably best to simplify/standardize those in order to avoid the difficulties discussed above. 
- Ask the lexicographer whether each definition ("gloss") that is nested under a complex form field (such as \oi) applies only to that complex form. If not, and the root \lx itself has that meaning, then the \oi field is not the parent of the definition field and can just be treated as a simple piece of paradigm information. For example, the following \oi fields do not contain any definitions and can therefore be handled with one or more custom paradigm fields. To use a single paradigm field, replace this...
\oi ad-achawwi

\oc comp.,

\oi ad-achawwijan

\oc superl.,

with something like this...

\paradigm |bad-achawwi|r cs. comp., |bad-achawwijan|r cs. superl.,

Using a separate field for each paradigm slot will require more custom fields and more use of "Configure Dictionary" in FLEx, but it will reduce the amount of manual formatting and may also transition better into a future paradigm feature:

\prcomp ad-achawwi

\prsup ad-achawwijan
- How many contexts does \co (comment) show up in? It may be best to use a different marker in each context, since each one may need to be imported slightly differently. For example, Ken identified five contexts for \co in one user's file; here are two of them: (a) "If \co comes after \l% codes, turn these into \cos and import into Subentry Note field." (b) "If \co comes after \va, turn it into \cov and import into Variant Comment."
- Ditto for other markers that can show up in multiple contexts. (There is a not-easily-fixed flaw in the FLEx importer that prevents most multi-context markers from importing properly. It's best to split them.)
- ??
Make empty fields such as \da or \de be non-empty

For example, replace these:
\da
\de
\dt

with these:

\d Ar
\d Eng
\d Tag

This can be done in an editor such as Notepad++ (or Notetab?), using a regular expression like this one.

replace this: ^\\dt[ ]*$

with this: \\d Tag

That is, find the beginning of the line, any \dt marker followed by zero or more spaces (and nothing else), and the end of the line. Output this: \d Tag

You'd need a similar regex for each donor language.
Likewise, replace empty \ar fields ("archaic", which can import into Restrictions). E.g. replace this...

\ar
\ar Used by children

with this...

\ar archaic
\ar Used by children

Combine crucially ordered fields such as \ad \rf \ad

Replace all sequences of \rf \ad (root-form derivational-affix) with a single field. For example, replace...
\rf arkhaw
\ad -an

...with
\deriv arkhaw + -an

Ditto for \ad \rf, and \ad \rf \ad. (Derivation.cc can help.) Otherwise, importing them as separate fields will not preserve the information implied by their order, and the two \ad fields in \ad \rf \ad will be tricky. Note: if comments (\co) are attached to these sequences, try handling them at the same time.

In the case of \rf \ad, the Solid mapping may infer an empty \ad as the parent of \rf. This is fine, but don't run the "make inferred markers real" quick fix for inferred \ad fields.
Handle shorthand formatting

Change bolding from plus codes (+) to bar codes (|b |r)

When bolding just one or two words, placing a plus before the word (+blah) is faster to type than using bar codes (|bblah|r), and more readable. However, this is a PLB-specific shorthand, and it's simpler to use one formatting system than two.
This can be done using a regular expression (regex) like this one.

replace this: \+([A-Za-z]+) \+([A-Za-z]+)

with this: |b\1 \2|r

That is, find a plus sign followed by one or more letters, then a space, then another plus sign followed by one or more letters. The parentheses store everything except for the plus signs and the space. Output a bar code, the first word, a space, the second word, and another bar code.

Ideally, this should first be adapted and run for 5 words in a row, then for 4, 3, 2, and 1.

In case the + is ever used for any other purpose anywhere, it would be safer, though tedious, to limit the regular expression to specific fields, like this: (\\gl .*)\+([A-Za-z]+) \+([A-Za-z]+)
TIP: Bold (|b) and italic (|i) can both apply at the same time (p.281), and one closing notation (|r) is used to close them both and revert to regular type. You may need to adapt the regex to replace this...
blah |iblah +blah blah|r blah

with this...
blah |iblah |bblah|r |iblah|r blah

When importing into FLEx, make sure to tell it to convert bar codes to formatting. This is especially important with Examples, and with Glosses if COBUILD-type definitions are being used.
Possible FLEx glitches (test first in your version of FLEx if feasible) :

- bar codes at the beginning of a field can cause import failure (bug LT-12142).

- bar codes on two neighboring words can cause the space between them to disappear. Example: |eref.|r |etheme|r imported as ref.theme . To avoid this problem, run the regular expression above for multiple words first.
Replace asterisk shorthand (*) with separate index fields
According to " Philippine Dictionaries on Computer", words used in a definition (\gl field) can be preceded with an asterisk as a shorthand for including them in the index. Thus,
\gl To *live *alone.

is equivalent to 
\gl To live alone.
\ie live alone
This asterisk shorthand is probably not worth the complexity, even in Shoebox/Toolbox, and it may be best to eliminate it before importing into FLEx. Alternatively, filtering and bulk editing straight to Reversals later on in FLEx could be a more efficient way to do this.

Try using the same techniques as was used to convert plus codes to bar codes. E.g. for two words...

replace this: ^(\\gl .*)\*([A-Za-z]+) \*([A-Za-z]+)(.*)$

with this: \1\2 \3\4\r\n\\ie \2 \3

That is, just in the \gl field, look for two words in a row preceded by an asterisk. Store and output all data except for the asterisks, and on a new line output an \ie field containing the asterisked data only.
Handle embedded data

Split off homograph numbers into their own field

This can be done fairly quickly using a regular expression like this one.
replace this: ^(\\lx [A-Za-z ]*)([0-9]+)$
with this: \1\r\n\\hom \2
That is, store "\lx" and any words and spaces in variable 1, and store any numbers in 2. Output the contents of 1, then a newline (\r\n) and "\hom ", then the contents of 2.
Split delimited fields
Instead of comma-separated values in a single field, use multiple fields. For example, replace...
\va gwahna, gwa

with
\va gwahna
\va gwa

This can be done fairly easily using a regular expression like this one.

replace this: ^\\va (\w+)[,;]\W*(\w+)
with this: \\va \1\r\n\\va \2

That is, find a \va field that begins with one word (\w = word-forming character), followed by a comma/semicolon and zero or more non-word-forming characters, followed by another word. The two words are stored in variables 1 and 2, making it easy to output them each on their own line.

Run this multiple times, in case some \va fields contained more than two values.

Some people separate their variants with a different shorthand such as "\lx ahu, kahu" or "\lx ahu ~ kahu". Variants like "kahu" here can be split out into \va (or \vd1 or \vd2) with a similar regex.
Flag embedded cross-references

If there are very many embedded cross-references, try to split out the ones that you can before importing. This way, the links will be created by the importer. (Finding these should be a matter of searching for italics "|i " within certain fields such as \ec, notes, and definitions.)

But sometimes splitting them out is not feasible. Since all "links" in SFM are manually maintained anyway*, some people use embedded cross-references (rather than creating separate cross-reference fields that might not read as well). In the following example, splitting these out as "real" cross-references wouldn't make sense in this case. So, these will need to be manually maintained, even in FLEx:
hamleng...
  2 n. A crop-guarding spirit. {A spirit bā'i 2, invoked to enforce a reed taboo sign pūdung...}  [p.305]
*Although Toolbox can find broken links, it can't automatically fix a link when its target's spelling changes. So, managing embedded cross-references in SFM data is not much more tedious than creating separate cross-reference fields, and they can be nicer to read.
Handle other kinds of embedding

Some of the Ifugao entries had an English label prior to each example sentence (p.319). This could be done in FLEx using a custom field at the Example level and importing into it. But when complex data is truly embedded in an unusual location, such as multiple examples with their translations being embedded within a sense's encyclopedic information (p.323), that's just too unstructured for a tool like FLEx to fully handle. If you don't need FLEx to know that they're examples, you could manually format this kind of embedded data, either before or after the import. Using an example-specific style everywhere should help.
Decide what to do with tables

If the lexicon contains tables (\tb and \rt) in the entries themselves, consider moving them into an appendix. Or, ask an import specialist or the FLEx developers what to do with these.
Decide what to do with senses and subsenses
This is the most complicated PLB SFM issue to figure out, unless the user has limited each sense (\ms) to contain just one definition and one part of speech.
Deal with grouped senses

After reading this whole document and choosing between Options A, B or C, you may want to simplify the import by getting rid of all grouped senses, especially if there aren't many. Here's an example (p.283):
bahāngal 1a n. A restraining poke for a pig...
1b v. Someone will make a restraining poke.
1c v. Someone will put a restraining poke onto a pig.
2a n. Restraining stakes for a carabao.
2b v. Someone will make restraining stakes.
An alternative format is to use 1.1, 1.2, and 1.3 instead of 1a, 1b, and 1c. Note that there is no plain sense 1 or sense 2 as there would need to be if using subsenses in FLEx. Consider renumbering as senses 1-5.

Deal with two-part subsenses

Likewise, it might be best to make sure no subsenses contain multiple definitions (p.298, 307), which we might call "two-part subsenses". Inserting a \ps field above each one should do the trick.
Eliminate any subentries of senses
These should not exist in PLB SFM (nor in MDF, for that matter, except in the alternate hierarchy). That is, subentry fields like \li or \ld should occur toward the end of the entry. They shouldn't be used as if they apply to a specific sense rather than to the entire entry.

If these truly are intended as subentries of senses and you have chosen option C, then they are ok.
Option A: Insert numbered subsenses wherever one sense (\ms) contains multiple subsenses; i.e. parts of speech (\ps)

FLEx allows one definition and one part of speech per sense. It does allow subsenses however, and can import both senses and carefully numbered subsenses. (PLB SFM and FLEx import: An \ms field may be empty or even missing for a main sense, but not for a subsense because that can't be reliably detected.)
- In PLB SFM, multiple parts of speech within a single sense are considered "subsenses" but are not usually numbered as such, so the numbers will need to be added. Use a script, or a CC table to "Fix sense refs" (Ken Zook's cc table).
- Optional: consider replacing \oa with an indication of inflection class (p.142) or expanding \oa into \oi.
Set the Dictionary view in FLEx to stem-based mode. This way, complex forms that aren't fully predictable (such as phrases and some derivatives), will get their own separate main entries. (You can still cross-reference those with their root's entry.)
Option B (recommended): Convert each complex-form subsense to an ordinary subentry.

- Determine whether \oi fields will become full-blown subentries or whether they will be relegated to paradigm fields. If there are some of each, split the field so they can be imported differently. 
- Expand \oa to \oi if necessary (uncommon). Wherever \oa is the head of what will become a subentry (users rarely do this), expand it into a full \oi field. You don't want a zillion homographs of each affix.
- Expand comma-separated wordforms into separate subentries, or handle them individually in some other way (e.g. moving all but the first into custom paradigm fields). Otherwise, these will import as phrases.
- Eliminate shorthand phrases such as "as described above" (p.284) from definitions, or at least replace them with "as described in __" cross-referencing to the root or earlier subentry. Rationale: that shorthand can reduce the redundancy of definitions, but it only works if the subentries are sorted into the same order as the senses/subsenses originally were in the SFM file. It also won't work if switching from root-based to stem-based mode, whereas cross-references would still work.
Option C: Convert each complex-form subsense to a subentry of a sense

This is a solution that preserves the original structure of PLB SFM while still allowing FLEx to "see" the complex forms. Warning: the FLEx importer currently cannot import subentries of senses.
- Determine whether \oi fields will become full-blown subentries.

- Expand \oa to \oi if necessary (uncommon).
- Expand comma-separated wordforms into separate subentries.

Option D (recommended): Collapsing multiple definitions down into one
- Verify that the "regular derivative" concept has indeed been used strictly and consistently, and all unpredictable forms have been safely split off into separate entries/subentries
- Have a script collapse all the main senses down so that they do not contain multiple "subsenses" (i.e. enforce one definition / part of speech per sense). Where this results in parts of speech being lost, have the script dump them into a temporary field so the user can review the record by filtering on that field.

- Have the script move each \oi field to the end of its sense, to be imported into a custom field. (Unfortunately, FLEx does not yet have a paradigm feature.)

