
Keyman Developer Tutorial
Modify a Desktop Keyboard

Session 2

This session we will modify a desktop keyboard for the Dagbani language of Ghana.

1. Start Keyman Developer.

2. In the Project menu, point to Recent Projects, click DagbaniTutorial.kpj.

3. In the Project - Keyboard dialog box, click Keyboards. Then click dagbanitutorial.kmn. The
Details pane appears.

4. Click Layout. The Layout pane appears. There is a Design tab and a Code tab. The Code
tab shows us the code that Keyman compiles to build the keyboard. The Design tab shows
a pictorial picture of the keyboard.

If we click Design tab, we get a message indicating the keyboard is too complex to
represent and modify visually. If we remove the NCAPS lines (55-183) by cutting them.
then the Design tab will display. Be sure to save the NCAPS lines in a text file. Then we
will be able to paste them back later. See sample lines below.

5. We will show how to make changes using the Design tab. Click Design tab.

6. In this tab, we see a visual representation of the keyboard. We can change what the

keyboard will do when we press a certain key.

Since the q and x characters are not used in the Dagbani language, we could reassign
the keys to other characters in the language like open e and open o, the other two
vowels in their language.

To change the q key to open e key, click on the q key in the layout to select it. In the
Character Map pane, enter open e in the textbox at the bottom of the pane. Highlight
the Latin small letter open e character by clicking it. Then double-click it. Note that the
Unicode Character Value and the Output character box are updated with open e Unicode
codepoint and character respectively.

Note that we can enter in the textbox at the bottom of the pane the Unicode value (e.g.
025B) to bring up the character. Or we could enter a range of Unicode values (e.g.
0620-064F) if we are working with a range of characters.

To change the x key to open o key, in the Character Map pane, enter open o in the
textbox at the bottom of the pane. Highlight the Latin small letter open o character by
clicking it. Then double-click it. Note that the Unicode Character Value and the Output
character box are updated with open o Unicode codepoint and character respectively.

​​​​​​​7. We would also need to do this for the capital letters. So first we need to click the Shift

key on the keyboard. The Shift key will change colors and the keyboard will change to
reflect what happens when we use the Shift key.

To change the Shift-q key to the upper-case open e key, in the Character Map pane, enter
open e in the textbox at the bottom of the pane. Highlight the Latin capital letter open
e character by clicking it. Then double-click it. Note that the Unicode Character Value and
the Output character box are updated with the upper-case open e Unicode codepoint and
character respectively.

To change the Shift-q key to the upper-case open o key, in the Character Map pane, enter
open o in the textbox at the bottom of the pane. Highlight the Latin capital letter open
o character by clicking it. Then double-click it. Note that the Unicode Character Value and
the Output character box are updated with the upper-case open o Unicode codepoint and
character respectively.

Let's look at the code we generated by clicking Code. Note that we now have four new
rules under the group (main).

​​​​​​​8. In this case, we do not really to replace the q and x keys, since we may want to use
them for borrowed foreign words. Also, we would need more keys for the consonants not
on the keyboard. So, we will delete the keys that we just added, by deleting the text in the
Unicode Character Value(s) text boxes for the four keys in the Design tab. Or we could delete

the keys, by deleting the fours line of generated code in the Code tab

9. We will use a different method for adding those keys. First click the Code tab.

We will want to paste back the NCAPs lines that we save in a text file to their original
position.

Now we are ready to add some code to add our special characters. We are going use a
semicolon plus a character to enter our special characters. We could add a line for each
special character as below, using the keyman rule structure Content + Keystroke gives
Output.

Begin Unicode > use(main)

group(main) using keys

";" + "e" > "ɛ"

";" + "o" > "ɔ"

";" + "n" > "ŋ"

";" + "g" > "ɣ"

";"+ "z" > "ʒ"

";" + "E" > "Ɛ"

";" + "O" > "Ɔ"

";" + "N" > "Ŋ"

";" + "G" > "Ɣ"

";" + "Z" > "Ʒ"

By pressing the semicolon key followed by the e key we will get the open e. This same
principle applies to the rest of the special characters as above.

But there is a more efficient way to write this code. We can create variables that hold a
group of characters. We will create two groups of equal size, and then in the rule, we will
tell Keyman to replace a member of the one group with the corresponding member of
the other group.

begin Unicode > use(main)

store(basekey) "eongzEONGZ"

store(output_char) "ɛɔŋɣʒƐƆŊƔƷ"

group(main) using keys

";" + any(basekey) > index(output_char,2)

Let's look at this rule.

';' + any(basekey) > index(output_char,2).

This says, “When there is a semicolon in the context and one of the characters in
basekey is typed, outputting the character at the same index point for the second
argument on the left side of the expression.”

The number 2 in the index is known as the offset. It is not referring to the second
character in the index. Instead, it is saying that the index is based on the second
argument on the left.

This example will help clarify. If we wanted to produce a special character every time the
base character was typed (swapping a ɛ for every e), then we would remove the
semicolon context and write the rule this way:

+ any(basekey) > index(output_char).

Now the index defaults to the first argument on the left side of the >. We don’t need to
include the offset at the end of the index since 1 is the default.

Now we can enter above into the Code pane as indicated below.

​​​​​​​10. Click the Save icon to save our work.

11. We could have use a deadkey for producing our special characters. A deadkey is like a
character that is used in the context or output but never appears on the screen. We would
use deadkeys like this:

c semi-colon becomes a deadkey

+ ";" > deadkey(semicolon)

c Handle semi-colon

deadkey(semicolon) + any(basekey) > index(output_char, 2)

c Handle a single semi-colon

deadkey(semicolon) + ";'" > ";'"

Note that for the sake of convenience, a deadkey can also be written in a short form:

dk(semicolon) c This is identical to deadkey(semicolon)

Typing the three rules above in place of the existing rule %22;%22 + any(basekey) >
index(output_char,2) for the semi-colon. If we test the keyboard now, we would find that we
would be able to produce the special characters in this way, too. But we've introduced
another difference to the keyboard now: the semi-colon is no longer displayed before we
type the vowel. This is because we are converting the semi-colon to a deadkey.

https://lingtran.net/%3Cspan%20class=%22Keyboard%22%20style=%22font-weight:bold%22%3E%22;%22%20+%20any(basekey)%20%3E%20index(output_char,2)
https://lingtran.net/%3Cspan%20class=%22Keyboard%22%20style=%22font-weight:bold%22%3E%22;%22%20+%20any(basekey)%20%3E%20index(output_char,2)

Notes

A keyboard file is divided into two sections: the header and the rules section. The header section defines
the name of the keyboard, its bitmap, and other general settings. The rules are used to define how the
keyboard responds to keystrokes from the user, and are divided into groups.

The keyboard header is the first part of a keyboard; it consists of statements that help Keyman identify
the keyboard and set default options for it. Each statement in the header must be on a separate line.
While there is no technical requirement to put header statements at the start of a keyboard source file,
keeping them there helps us to identify them easily, and keeps them consistent with keyboard programs
other people might write.

The keyboard rules section is the most important part: it determines the behavior of the keyboard. The
section consists of groups, which in turn contain one or more rules which define the responses of the
keyboard to certain keystrokes.

There are two types of groups: groups that process the keys pressed and the context, and groups that
process the context only. For simple keyboards, the latter type of group will not be required. A group
begins with a group statement, and ends either at the start of another group, or at the end of the
keyboard file. An example group statement is given below.

group(Main) using keys

The using keys clause tells Keyman that this group will process keystroke.

Below the group statement there is a series of rule statements. A rule tells Keyman the output to
produce for a certain input. A rule consists of three parts: the context, the key, and the output. The
context specifies the conditions under which a rule will act. If what is shown in the document to the left
of the cursor matches the context of a rule, the rule will be processed. The key specifies which
keystroke the rule will act upon. The output determines the characters that are produced by a rule. The
output replaces the matched context in the document.

	[Keyman Developer Tutorial]
	Keyman Developer Tutorial
	Modify a Desktop Keyboard
	Session 2
	

